Publications

Export 3 results:
Sort by: Title Type [ Year  (Asc)]
2012
Preoţiuc-Pietro, Daniel, and Florentina Hristea. "Unsupervised word sense disambiguation with N-gram features." Artificial Intelligence Review 41 (2012): 241-260. AbstractWebsite

The present paper concentrates on the issue of feature selection for unsupervised word sense disambiguation (WSD) performed with an underlying Naïve Bayes model. It introduces web N-gram features which, to our knowledge, are used for the first time in unsupervised WSD. While creating features from unlabeled data, we are “helping” a simple, basic knowledge-lean disambiguation algorithm to significantly increase its accuracy as a result of receiving easily obtainable knowledge. The performance of this method is compared to that of others that rely on completely different feature sets. Test results concerning nouns, adjectives and verbs show that web N-gram feature selection is a reliable alternative to previously existing approaches, provided that a “quality list” of features, adapted to the part of speech, is used.

Varga, Andrea, Daniel Preoţiuc-Pietro, and Fabio Ciravegna. Unsupervised document zone identification using probabilistic graphical models. LREC., 2012. AbstractPDF

Document zone identification aims to automatically classify sequences of text-spans (e.g. sentences) within a document into predefined zone categories. Current approaches to document zone identification mostly rely on supervised machine learning methods, which require a large amount of annotated data, which is often difficult and expensive to obtain. In order to overcome this bottleneck, we propose graphical models based on the popular Latent Dirichlet Allocation (LDA) model. The first model, which we call zoneLDA aims to cluster the sentences into zone classes using only unlabelled data. We also study an extension of zoneLDA called zoneLDAb, which makes distinction between common words and non-common words within the different zone types. We present results on two different domains: the scientific domain and the technical domain. For the latter one we propose a new document zone classification schema, which has been annotated over a collection of 689 documents, achieving a Kappa score of 85%. Overall our experiments show promising results for both of the domains, outperforming the baseline model. Furthermore, on the technical domain the performance of the models are comparable to the supervised approach using the same feature sets. We thus believe that graphical models are a promising avenue of research for automatic document zoning.

2013
Lampos, Vasileios, Daniel Preoţiuc-Pietro, and Trevor Cohn. A user-centric model of voting intention from Social Media. ACL., 2013. AbstractPDFPoster

Social Media contain a multitude of user opinions which can be used to predict realworld phenomena in many domains including politics, finance and health. Most existing methods treat these problems as linear regression, learning to relate word frequencies and other simple features to a known response variable (e.g., voting intention polls or financial indicators). These techniques require very careful filtering of the input texts, as most Social Media posts are irrelevant to the task. In this paper, we present a novel approach which performs high quality filtering automatically, through modelling not just words but also users, framed as a bilinear
model with a sparse regulariser. We also consider the problem of modelling groups of related output variables, using a structured multi-task regularisation method. Our experiments on voting intention prediction demonstrate strong performance over large-scale input from Twitter on two distinct case studies, outperforming competitive baselines.