Publications

Export 1 results:
Sort by: [ Title  (Desc)] Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Preoţiuc-Pietro, Daniel, Wei Xu, and Lyle Ungar. Discovering User Attribute Stylistic Differences via Paraphrasing In AAAI., 2016. AbstractPDFSlides

User attribute prediction from social media text has proven successful and useful for downstream tasks. In previous studies, user trait differences have been limited primarily to the presence or absence of words that indicate topical preferences. In this study, we aim to find linguistic style distinctions across three different user attributes: gender, age and occupational class. By combining paraphrases with a simple yet effective method, we capture a wide set of stylistic differences that are exempt from topic bias. We show their predictive power in user profiling, conformity with human perception and psycholinguistic hypotheses, and potential use in generating natural language tailored to specific user traits.